

ML Developers for Real Estate Developers

Ekapol Chuangsuwanich

Joint work with Parichat Chonwiharnphan, Pipop Thienprapasith, Proadpran Punyabukkana, Atiwong Suchato, Naruemon Pratanwanich, Ekkalak Leelasornchai, Nattapat Boonprakong, Panthon Imemkamon

About me

Lecturer at Chulalongkorn University

Research focus: ASR, NLP, Bioinformatics, or anything interesting

Various industry collaborations

Ex-intern Google Speech team, a tensorflow fanboy

About HomeDotTech

About HomeDotTech

Part of Home Buyer's Group

http://home.co.th

One of the most visited Real Estate Listings website in Thailand

~2,000,000 page views per month

Real Estate

The most expensive purchase for most people

Little prior experience

Top complaints to the Office of the Consumer Protection Board (สคบ.)

Homedottech's mission is to help with the home buying process.

Data science for Real Estate

Consumer

Matching

Social listening

(Real Estate) Developers

Lead generation and smart marketing

Social listening

Project development Customer segmentation Trend prediction Pricing

Data science for Real Estate

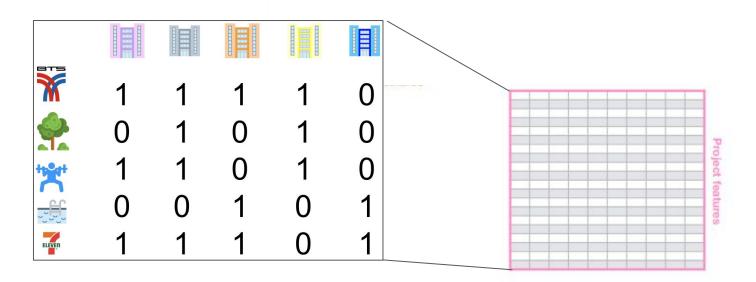
Recommendation systems

Goal: predict user's preference toward an item

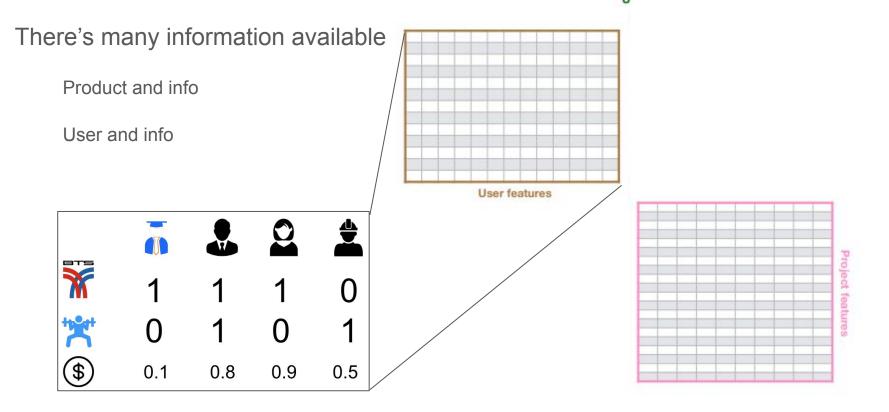
Information for recommendation systems

There's many information available

Product and info



Information for recommendation systems



Information for recommendation systems

There's many information available

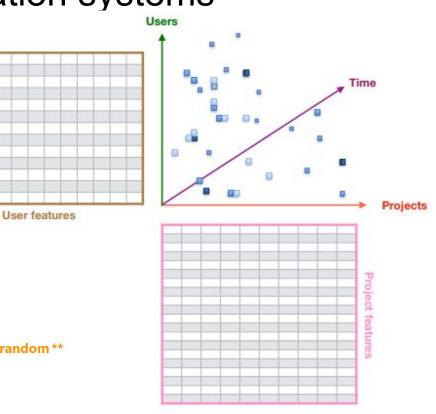
Product and info

User and info

Interactions between product and user

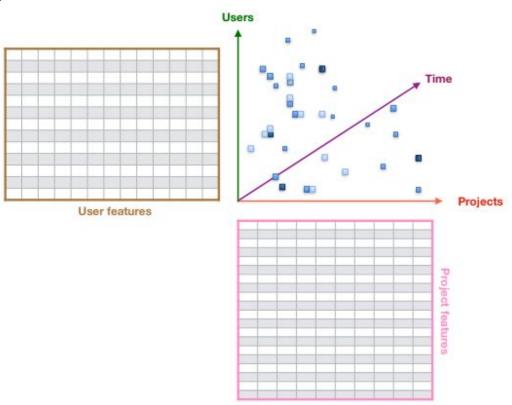
Rating Time Missing interactions

** Missing not at random **



Information in the clicks

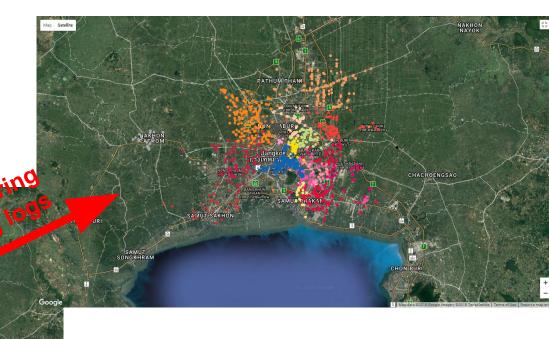
User interactions (views of the projects) can provide interesting insights

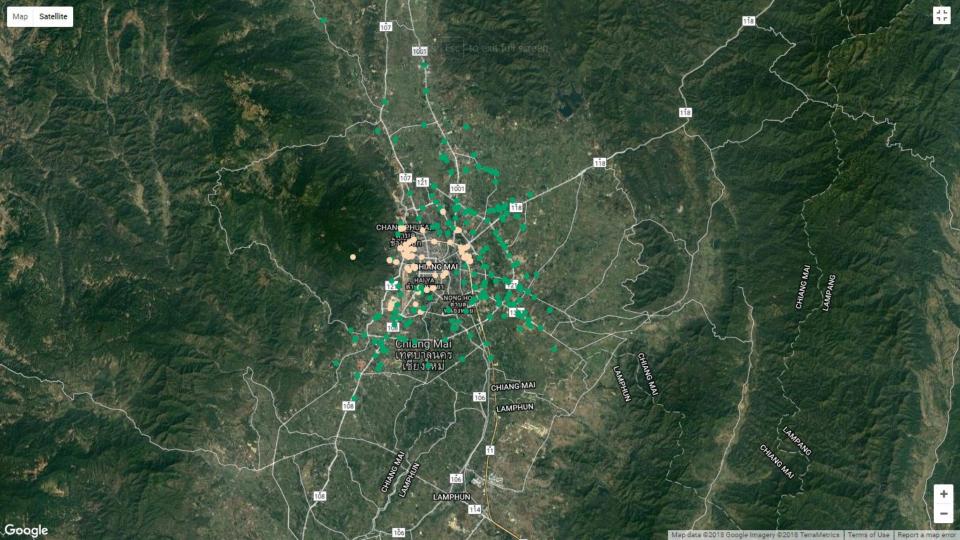


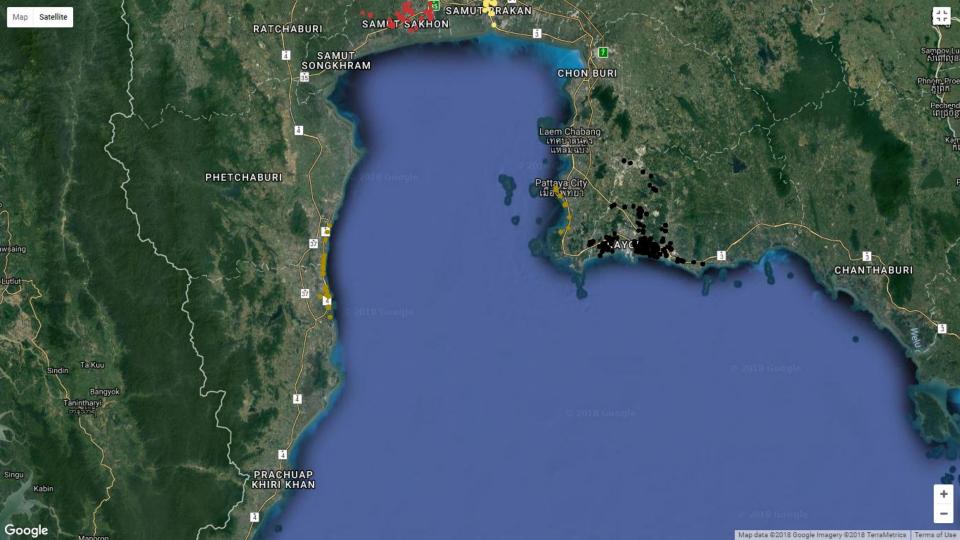
Product segmentation from user interactions

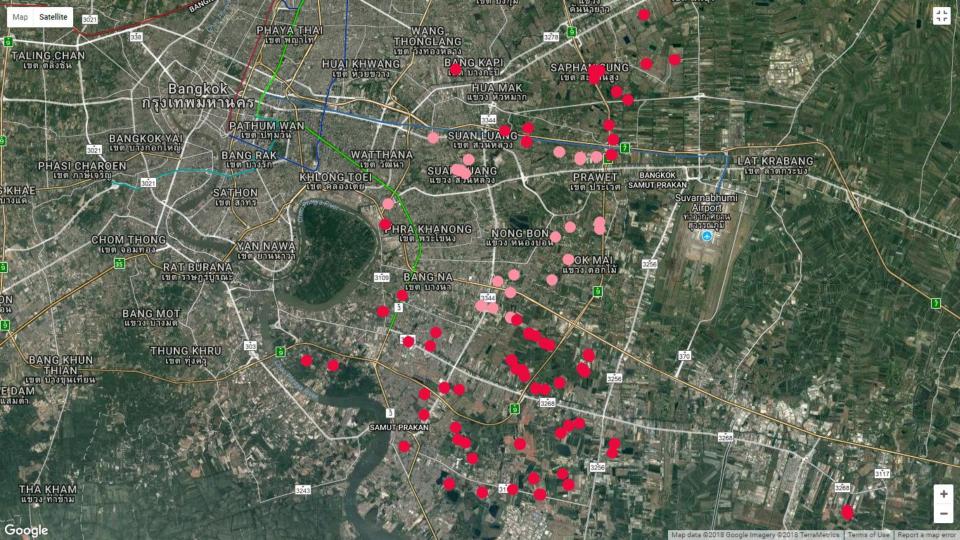
Run k-means clustering on view logs to cluster the real estates in Thailand.

We can also cluster viewers.









Context information

There's many information available

Product and info

User and info

Interactions between product and user

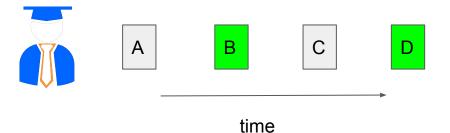
Rating Time Missing interactions

Users Time Θ, Projects User features Project feature ** Missing not at random ** úñ.

Autoregressive recommendation model

Modeling time information (sequence)

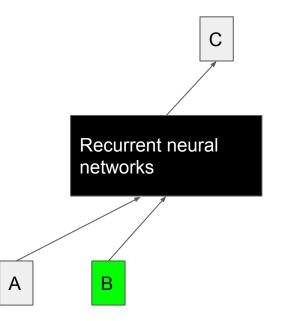
Recurrent Neural Networks



Autoregressive model

Modeling time information (sequence)

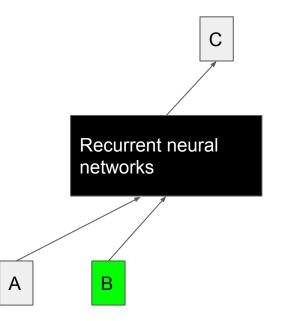
Recurrent Neural Networks



Autoregressive model

Modeling time information (sequence)

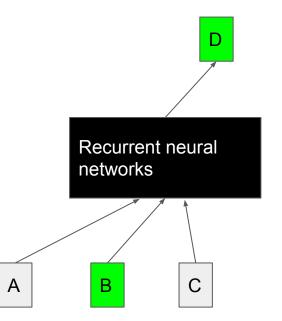
Recurrent Neural Networks



Autoregressive model

Modeling time information (sequence)

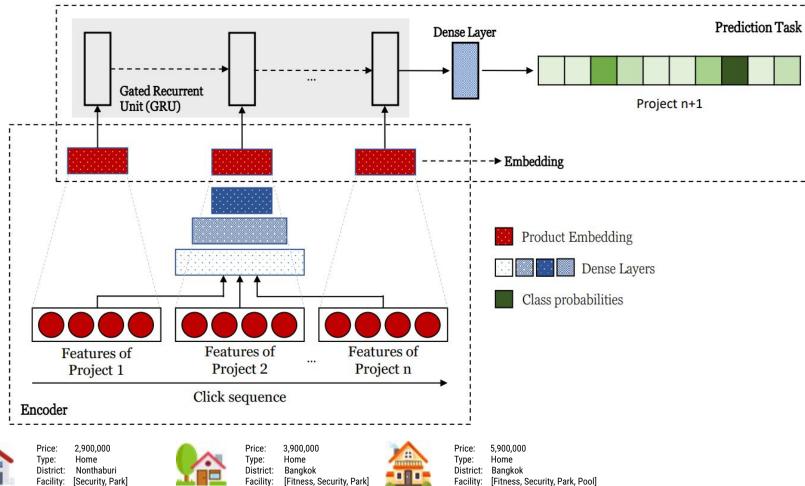
Recurrent Neural Networks



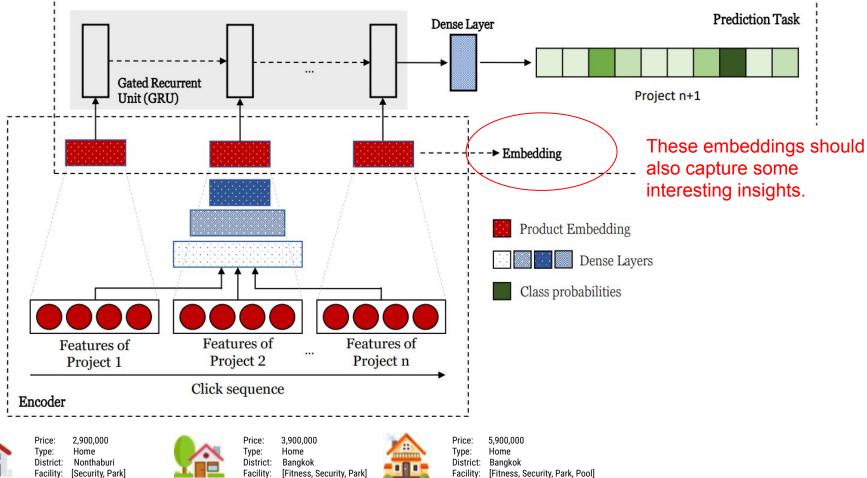
P Covington, Deep Neural Networks for YouTube Recommendations. 2016

A Beutel, Latent Cross: Making Use of Context in Recurrent Recommender Systems, 2018

CHULA *SNGINEERING*



CHULA **ENGINEERING**



HOMEHOP

Home recommender app based on user's lifestyle and commute.

Persona

ไลฟ์สไตล์ (persona) ในการเลือกซื้อบ้าน ซึ่งแบ่งประเภท โดย AI จากข้อมูลผู้ใช้กว่า 10 ล้านคน

Daily life travel

วิธีและเวลาปกติที่คุณเดินทางจากบ้านไปยังที่ทำงาน หรือ สถานที่ต่างๆ ในชีวิตประจำวันของคุณ

Affordable Price

ช่วงราคาบ้านที่คุณต้องการ หรือสามารถจ่ายได้

Traffic data from iTIC

ข้อมูลการจราจร จากมูลนิธิศูนย์ข้อมูลจราจรอ้ฉริยะไทย เพื่อแนะนำโครงการที่จะใช้เวลาเดินทางน้อยที่สุด

1. เลือกแผนการเดินทาง

ระบุสถานที่ต่างๆ ที่คุณมักจะเดินทางไปในแต่ละวัน เช่น บ้าน โรงเรียนของลูก สถานที่ทำงาน ห้าง สรรพสินค้าที่มักเดินทางไปบ่อยๆ เป็นต้น พร้อมทั้งระบุเวลาตั้งแต่ออกจากบ้าน จนถึงเวลากลับถึง บ้าน

2. เลือกวิธีการเดินทาง

เลือกวิธีการเดินทาง เช่น เดินทางโดยรถยนต์ส่วนตัว รถประจำทาง เรือ รถไฟฟ้า โดยระบบจะ คำนวณเวลาการเดินทางจากข้อมูลจราจร ของมูลนิธิศูนย์ข้อมูลจราจรอัจฉริยะไทย

3. เลือกช่วงราคาบ้านที่คุณต้องการ

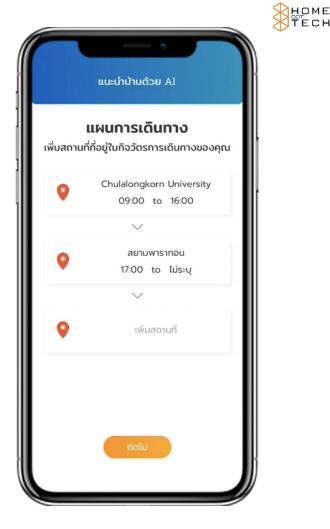
เลือกช่วงราคาบ้านที่คุณต้องการจะซื้อ

4. เลือกเพอร์โซนา

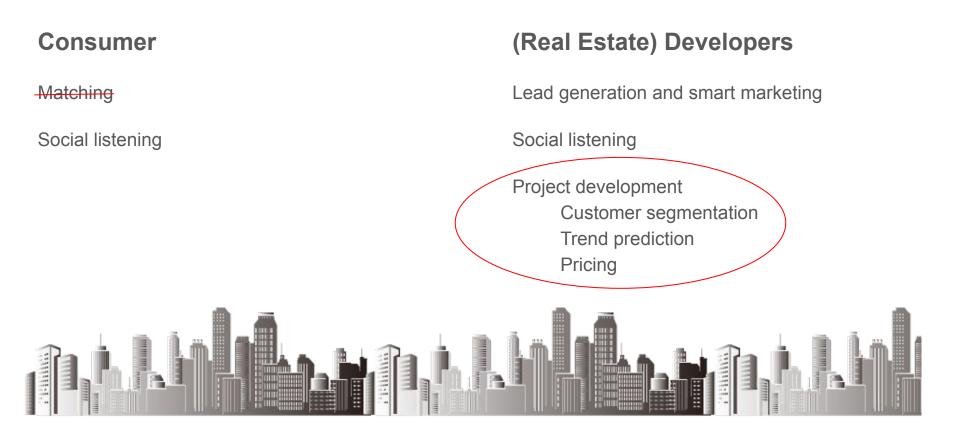
ระบุเพอร์โซนา (persona) หรือ ไลฟ์สไตล์ของคุณ เช่น เน้นประโยชน์ใช้สอย หรือเน้นความหรูหรา

5. ประมวลผล

ยืนยันข้อมูล แล้วสนุกไปกับการเลือกบ้านที่โปรแกรมแนะนำ ได้ทันที!



Data science for Real Estate

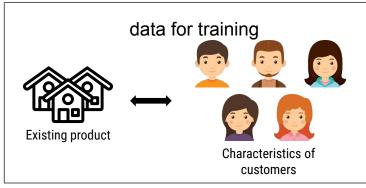


ML for product development

For real estates, no two products are the same. Development based on gut feeling.

Make some informative guess about a new product

- popularity
- the type of potential buyers
- whether to add or remove some features
- the best marketing channel



Magical ML model

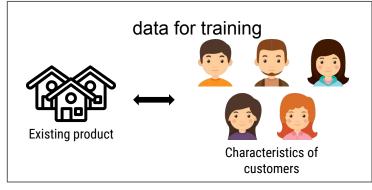
ML for product development

For real estates, no two products are the same. Development based on gut feeling.

Make some informative guess about a new product

- popularity
- the type of potential buyers
- whether to add or remove some features
- the best marketing channel

We want to learn the distribution of the user given some input. How?



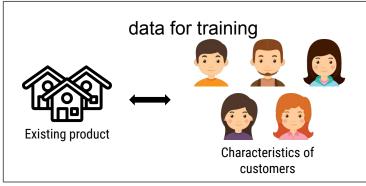
Magical ML model

ML for product development

For real estates, no two products are the same. Development based on gut feeling.

Make some informative guess about a new product

- popularity
- the type of potential buyers
- whether to add or remove some features
- the best marketing channel



Conditional Generative Adversarial Networks

GAN!

Y = f(x)

Discriminator — Real or Fake

Generative Adversarial Networks (GANs)

Consider a money counterfeiter

0.1, -0.3, ...

7

Generator

He wants to make fake money that looks real

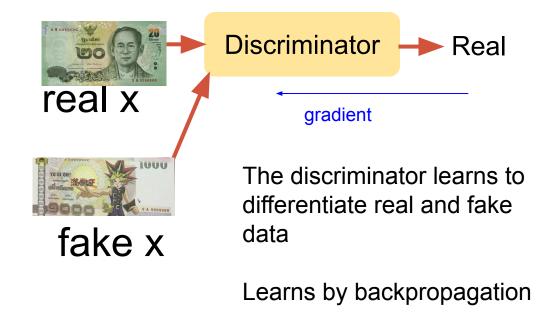
There's a police that tries to differentiate fake and real money.

196

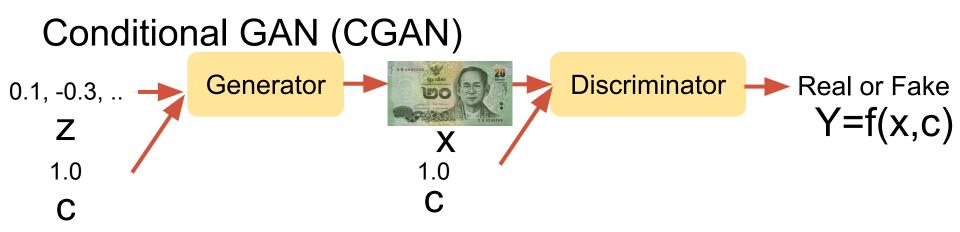
Х

The counterfeiter is the adversary and is generating fake inputs. – Generator network

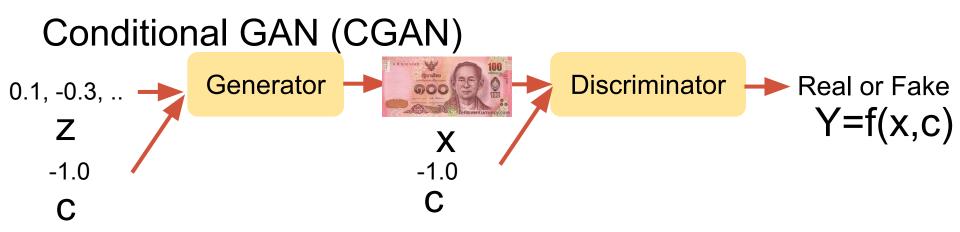
The police is try to discriminate between fake and real inputs. – Discriminator network



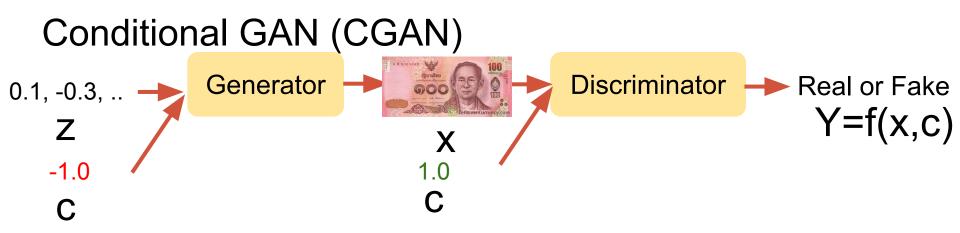
The generator learns to be better by the gradient given by the discriminator



GAN can be conditioned (controlled) to generate things you want by concatenating additional information



GAN can be conditioned (controlled) to generate things you want by concatenating additional information



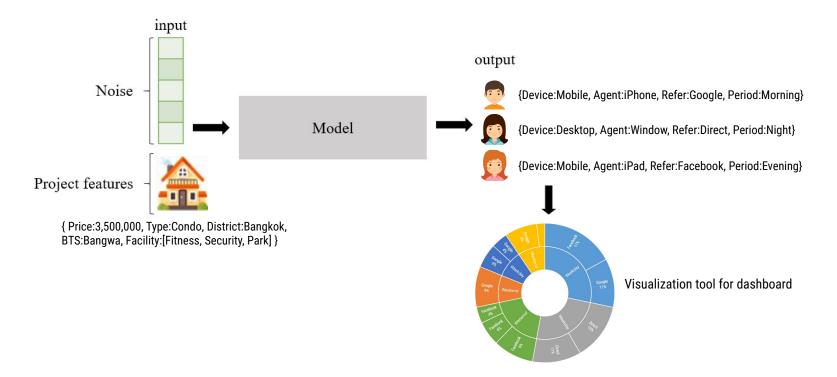
GAN can be conditioned (controlled) to generate things you want by concatenating additional information

Example of CGAN applications

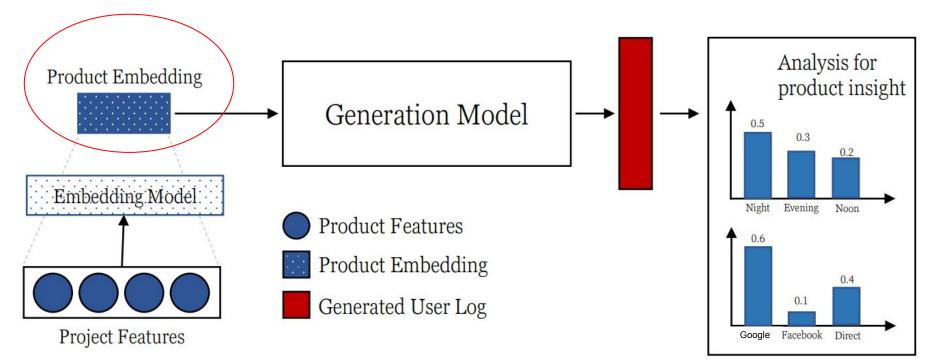
This bird is white with some black on its head and wings, and has a long orange beak This bird has a yellow belly and tarsus, grey back, wings, and brown throat, nape with a black face This flower has overlapping pink pointed petals surrounding a ring of short yellow filaments

Globally and Locally Consistent Image Completion [lizuka et al., 2017] StackGAN: Text to Photo-realistic Image Synthesis with Stacked GANs [Zhang et al. 2017]

Overview of our system



Embedding learned from our recommender system



Why GAN?

vs supervised learning

- supervised learning yields one correct answer (not learning the distribution)
- cannot be used to generate examples

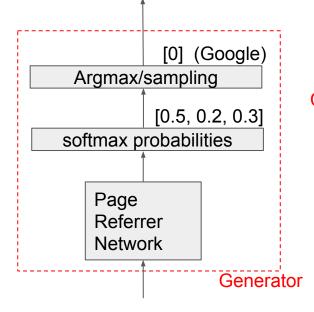
vs other distribution learning methods

- non-parametric
- better than other methods for multi-modal distributions
- generate things that differ from the training data but still "realistic"

GAN for discrete output

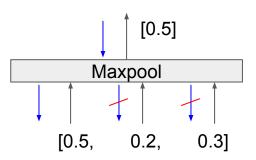
Unlike images, generating discrete output includes a sampling process

fake log for the discriminator



Gradient from discriminator

Cannot backprop through the argmax



GAN for discrete output

Unlike images, generating discrete output includes a sampling process

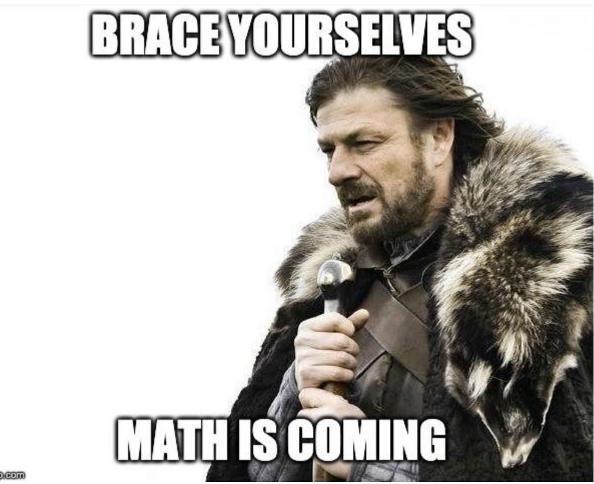
fake log for the discriminator

[0] (Google)
sampling
[0.5, 0.2, 0.3]
robabilities
er
rk
Generator

Gradient from discriminator

Cannot backprop through the argmax

Two popular methods: REINFORCE, Gumbel-Softmax approximation (https://arxiv.org/abs/1611.01144)

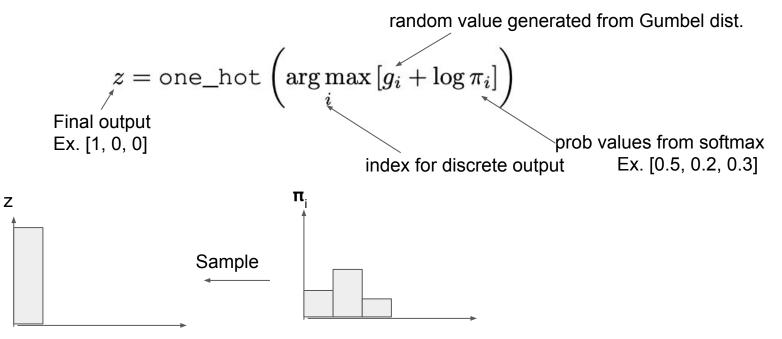


CHULA SNGINEEPING

IF YOU DON'T UNDERSTAND, DON'T WORBY ABOUT IT

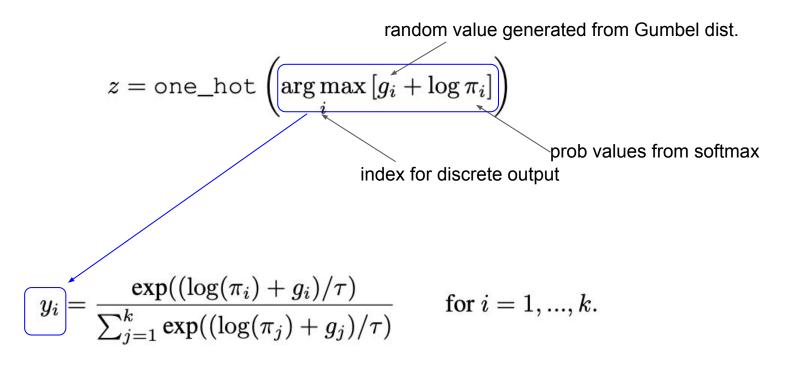
makeameme.org

Sampling from a softmax can be done via the Gumbel-max trick

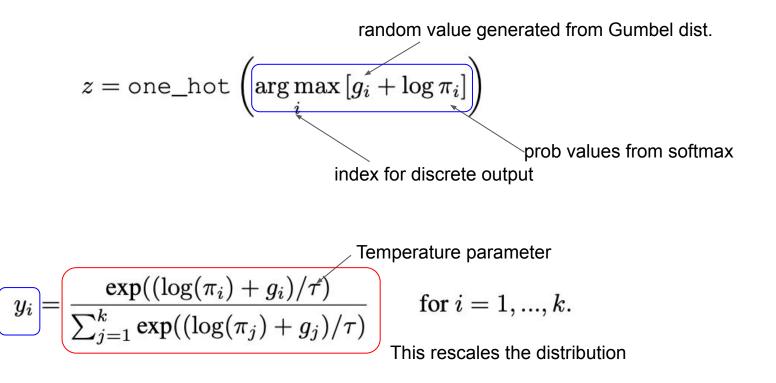


https://arxiv.org/pdf/1611.01144.pdf

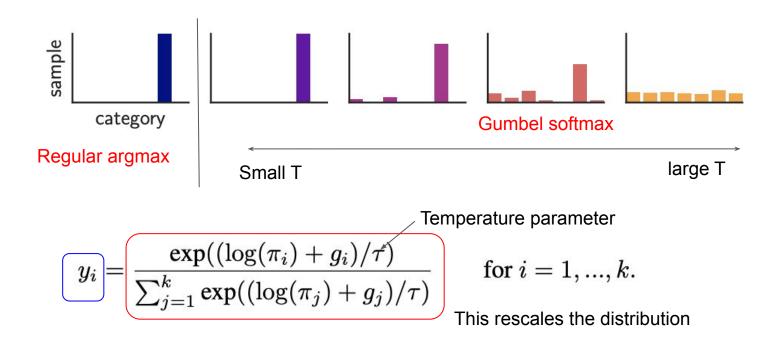
Approximate the argmax term with **y** (continuous)



Approximate the argmax term with **y** (continuous)



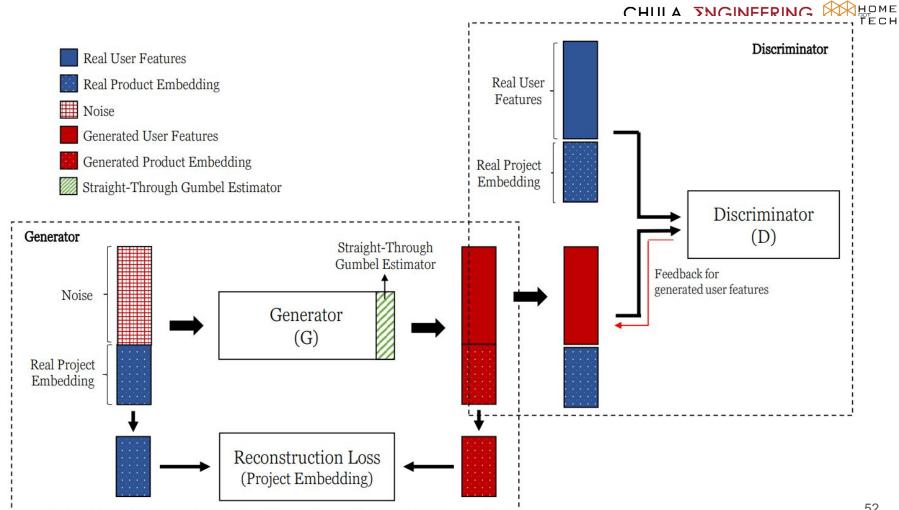
y at small T is similar to an argmax but can be backpropagated through



Straight-through Gumbel estimator

Forward to **Backward from** the discrim. the discrim. f(z) f(y) $\frac{\partial f}{\partial v}$ Z $\frac{\partial y}{\partial u}$ $log P_{\theta}(Y)$ $\log \pi$ g $\partial log P_{\theta}(Y)$ дө π_i

The generator generates both the argmax and the Gumbel version. The discriminator uses the argmax version as input. However, the gradient is passed through the Gumbel version.

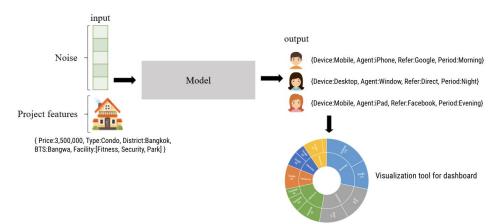


Experimental setup

~5000 projects, ~2 million log entries

- Held out 50 random projects as novel projects to generate
- Measure the distribution of generated logs vs real data

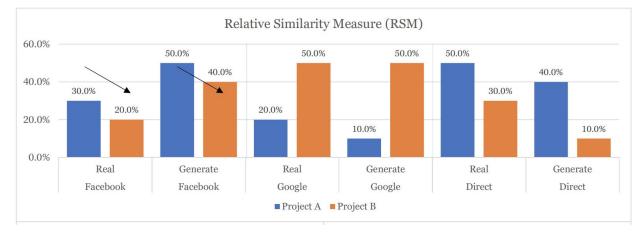
Average the performance over 10 runs



Metrics

RSM

Relative measure Across project pairs

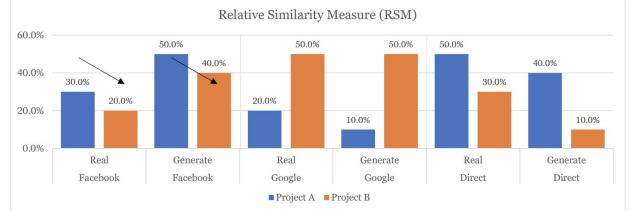


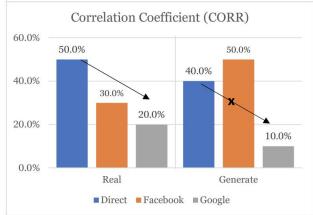
Metrics

RSM

Relative measure Across project pairs

Correlation Relative measure Within a project





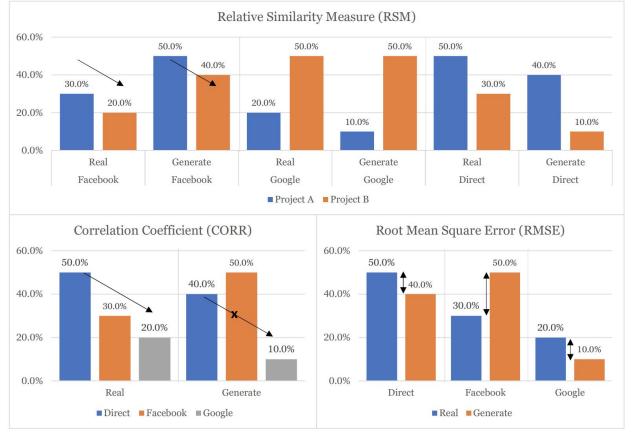
Metrics

RSM

Relative measure Across project pairs

Correlation Relative measure Within a project

RMSE Absolute measure



Model	RSM	CORR	RMSE

Use the most similar project in the training data based on recommendation embeddings

Model	RSM	CORR	RMSE	
GAN with Rec. Emb	72.5%	88.9%	16.2%	Our model with recommender embedding
	54.7%	71.6%	28.0%	Use the most similar project in the
NN with Rec. Emb	34.770	11.070	20.070	

Model	RSM	CORR	RMSE
GAN with Rec. Emb	72.5%	88.9%	16.2%
GAN with AutoEncoder Emb	69.7%	87.8%	18.1%
GAN with product features	67.9%	86.6%	18.2%
	1	1	
NN with Rec. Emb	54.7%	71.6%	28.0%

Our model with recommender embedding

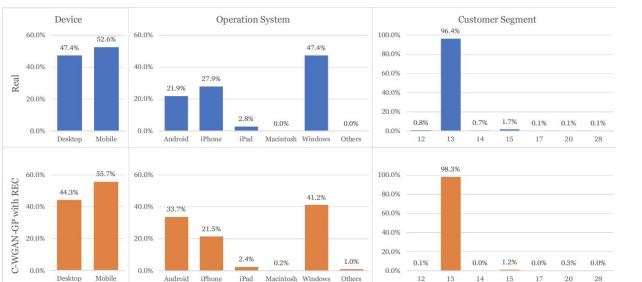
Our model with embeddings learned from Autoencoder Our model with product features instead of embedding

> No knowledge about relationships between different products

Model	RSM	CORR	RMSE
GAN with Rec. Emb	72.5%	88.9%	16.2%
GAN with AutoEncoder Emb	69.7%	87.8%	18.1%
GAN with product features	67.9%	86.6%	18.2%
VAE with Rec. Emb	65.3%	85.6%	20.3%
NN with Rec. Emb	54.7%	71.6%	28.0%

Our model with recommender embedding

Instead of GAN use VAE



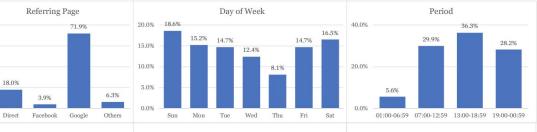
80.0%

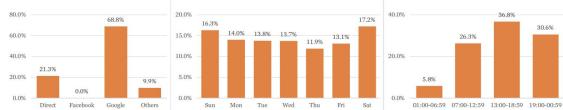
60.0%

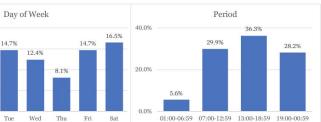
40.0%

20.0%

0.0%







30.6%

Data science for Real Estate

Consumer

Matching

Autoregressive Recommender system

(Real Estate) Developers

Project development

GAN-based distribution learning

Team

Questions?

